Robust Strategy against Unknown Risk-averse Attackers in Security Games
نویسندگان
چکیده
Stackelberg security games (SSGs) are now established as a powerful tool in security domains. In this paper, we consider a new dimension of security games: the risk preferences of the attacker. Previous work assumes a risk-neutral attacker that maximizes his expected reward. However, extensive studies show that the attackers in some domains are in fact risk-averse, e.g., terrorist groups in counter-terrorism domains. The failure to incorporate the risk aversion in SSG models may lead the defender to suffer significant losses. Additionally, defenders are uncertain about the degree of attacker’s risk aversion. Motivated by this challenge this paper provides the following five contributions: (i) we propose a novel model for security games against risk-averse attackers with uncertainty in the degree of their risk aversion; (ii) we develop an intuitive MIBLP formulation based on previous security games research, but find that it finds locally optimal solutions and is unable to scale up; (iii) based on insights from our MIBLP formulation, we develop our scalable BeRRA algorithm that finds globally ǫ-optimal solutions; (iv) our BeRRA algorithm can also be extended to handle other risk-aware attackers, e.g., risk-seeking attackers; (v) we show that we do not need to consider attacker’s risk attitude in zero-sum games.
منابع مشابه
To Handle, to Learn and to Manipulate the Attacker's (Uncertain) Payoffs in Security Games: Doctoral Consortium
Stackelberg security games (SSGs) are now established as a powerful tool in security domains. In order to compute the optimal strategy for the defender in SSG model, the defender needs to know the attacker’s preferences over targets so that she can predict how the attacker would react under a certain defender strategy. Uncertainty over attacker preferences may cause the defender to suffer large...
متن کاملRobust allocation of a defensive budget considering an attacker's private information.
Attackers' private information is one of the main issues in defensive resource allocation games in homeland security. The outcome of a defense resource allocation decision critically depends on the accuracy of estimations about the attacker's attributes. However, terrorists' goals may be unknown to the defender, necessitating robust decisions by the defender. This article develops a robust-opti...
متن کاملRisk-Averse Strategies for Security Games with Execution and Observational Uncertainty
Attacker-defender Stackelberg games have become a popular game-theoretic approach for security with deployments for LAX Police, the FAMS and the TSA. Unfortunately, most of the existing solution approaches do not model two key uncertainties of the real-world: there may be noise in the defender’s execution of the suggested mixed strategy and/or the observations made by an attacker can be noisy. ...
متن کاملRobust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملLazy Defenders Are Almost Optimal against Diligent Attackers
Most work building on the Stackelberg security games model assumes that the attacker can perfectly observe the defender’s randomized assignment of resources to targets. This assumption has been challenged by recent papers, which designed tailor-made algorithms that compute optimal defender strategies for security games with limited surveillance. We analytically demonstrate that in zero-sum secu...
متن کامل